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A Recursive Model-Reduction Method for Approximate
Inference in Gaussian Markov Random Fields

Jason K. Johnson and Alan S. Willsky

Abstract

This paper presentsrecursive cavity modeling—a principled, tractable approach to approximate, near-optimal
inference for large Gauss-Markov random fields. The main idea is to subdivide the random field into smaller
subfields, constructingcavity modelswhich approximate these subfields. Each cavity model is a concise yet faithful
model for the surface of one subfield sufficient for near-optimal inference in adjacent subfields. This basic idea
leads to a tree-structured algorithm which recursively builds a hierarchy of cavity models during an “upward pass”
and then builds a complementary set ofblanket modelsduring a reverse “downward pass.” The marginal statistics
of individual variables can then be approximated using their blanket models.Model thinningplays an important
role, allowing us to develop thinned cavity and blanket models thereby providing tractable approximate inference.
We develop amaximum-entropyapproach that exploits certain tractable representationsof Fisher information on
thin chordal graphs. Given the resulting set of thinned cavity models, we also develop afast preconditioner, which
provides a simple iterative method to compute optimal estimates. Thus, our overall approach combines recursive
inference, variational learning and iterative estimation. We demonstrate the accuracy and scalability of this approach
in several challenging, large-scale remote sensing problems.

I. I NTRODUCTION

Markov random fields (MRFs) play an important role for modelingand estimation in a wide variety of contexts
including physics [1], [2], communication and coding [3], signal and image processing [4], [5], [6], [7], [8], [9],
pattern recognition [10] remote sensing [11], [12], [13], sensor networks [14], and localization and mapping [15].
Their importance can be traced in some cases to underlying physics of the phenomenon being modeled, in others
to the spatially distributed nature of the sensors and computational resources, and in essentially all cases to the
expressiveness of this model class. MRFs aregraphical models[16], [17], that is, collections of random variables,
indexed by nodes of graphs, which satisfy certain graph-structured conditional independence relations: Conditioned
on the values of the variables on any set of nodes that separate the graph into two or more disconnected components,
the sets of values on those disconnected components are mutually independent. An implication of this Markov
property—thanks to the Hammersley-Clifford Theorem [18], [1]—is that the joint distribution of the variables at all
nodes can be compactly described in terms of “local” interactions among variables at small, completely connected
subsets of nodes (thecliquesof the graph).

MRFs have another well recognized characteristic, namely that performing optimal inference on such models
can be prohibitively complex because of the implicit codingof the global distribution in terms of many local
interactions. For this reason, most applications of MRFs involve the use of suboptimal or approximate inference
methods, and many such methods have been developed [19], [20], [21], [22]. In this paper we describe a new,
systematic approach, to approximately optimal inference for MRFs that focuses explicitly on propagating local
approximate models for subfields of the overall graphical model that are close (in a sense to be made precise) to
the exact models for these subfields but are far simpler and, infact allow computationally tractable exact inference
with respect to these approximate models.

The building blocks for our approach—variable elimination,information projections, and inference on cycle-free
graphs (that is, graphs that aretrees)—are well-known in the graphical model community. What is new here is their
synthesis into a systematic procedure for computationallytractable inference that focuses on recursive reduced-order
modeling(based on information-theoretic principles) and exact inference on the resulting set of approximate models.
The resulting algorithms also have attractive structure that is of potential value for distributed implementations such
as in sensor networks. To be sure our approach has connections with work of others—perhaps most significantly
with [23], [24], [25], [12], [26], [27], and we discuss theserelationships as we proceed.
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While the principles for our approach apply to general MRFs, we focus our development on the important class of
Gaussian MRFs (GMRFs). In the next section we introduce this class, discuss the challenges in solving estimation
problems for such models, briefly review methods and literature relevant to these challenges and to our approach,
and provide a conceptual overview of our approach that also explains its name:Recursive Cavity Modeling(RCM).
In Section III we develop the model-reduction techniques required by RCM. In particular, we develop a tractable
maximum-entropy method to compute information projections using convex optimization methods and tractable
representations of Fisher information for models defined on chordal graphs. In Section IV we provide the details
of the RCM methodology, which consists of a two-pass procedure for building cavity and blanket models and a
corresponding hierarchical preconditioner for iterativeestimation. Section V demonstrates the effectiveness of RCM
with its application to several remote sensing problems. Weconclude in Section VI with a discussion of RCM and
further directions that it suggests.1

II. PRELIMINARIES

A. Gaussian Markov Random Fields

Let G = (V, E) denote a graph with node (or vertex) setV and edge setE ⊂ V × V . Let xv denote a random
variable associated with nodev ∈ V , and letx denote the vector of all of thexv. If x is Gaussian with mean̂x
and invertible covarianceP, its probability density can be written as

p(x) ∝ exp{−1

2
(x− x̂)T P−1(x− x̂)} ∝ exp{−1

2
xT Jx + hT x} (1)

Jx̂ = h

P = J−1 (2)

The form on the right-hand side of (1) is often referred to as the information formof the statistics of a Gaussian
process whereJ is the information matrix. The fill pattern ofJ provides the Markov structure [28]:x is Markov
with respect toG if and only if Ju,v = 0 for all {u, v} 6∈ E .

In applications,̂x andP typically specifyposteriorstatistics ofx after conditioning on some set of observations.
The most common example is one in which we have an original GMRFwith respect toG, together with measure-
ments, corrupted by independent Gaussian noise, at some or all of the nodes of the graph. Since an independent
measurement at nodev simply modifies the values ofhv and Jv,v, the resulting field conditioned on all such
measurements is also Markov with respect toG.

B. The Estimation Problem

Given J and h, we wish to computêx and (at least) the diagonal elements ofP—thus providing the marginal
distributions for each of thexv. However solving the linear equations in (2) and invertingJ can run into scalability
problems. For example, methods that take no advantage of graphical structure requireO(n3) computations for
graphs withn nodes. If the graphG has particularly nice structure, however, very efficient algorithms do exist.
In particular, if G is a tree there are a variety of algorithms which computex̂ and the diagonal ofP with total
complexity that is linear inn and that also allow distributed computation correspondingto “messages” being
passed along edges of the graph. For example, ifJ is tri-diagonal, the variablesxv form a Markov chain, and
efficient solution of (2) can be obtained by Gaussian elimination of variables from one end of the chain to the
other followed by back-substitution—corresponding to a forward Kalman filtering sweep followed by a backward
Rauch-Tung-Striebel smoothing sweep [14].

Because of the abundance of applications involving MRFs on graphs with cycles, there is considerable interest
and a growing body of literature on computationally tractable inference algorithms. For example, the generalization
of the Rauch-Tung-Striebel smoother to trees can in principle be applied to graphs with cycles by aggregating
nodes of the original graph—using so-called junction tree algorithms [17] to form an equivalent model on a tree.
However, the dimensions of variables at nodes in such a tree model depend on the so-calledtree-width of the
original graph [29], with overall inference complexity in GMRFs that grows as the cube of this tree-width. Thus,

1A C++ implementation of the algorithms described in this paper is available athttp://ssg.mit.edu/group/jasonj.
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these algorithms are tractable only for graphs with small tree-width, precluding use for many graphs of practical
importance such as a 2Ds × s lattice (with n = s2 nodes) for which the tree-width iss (so that the cube of the
tree-width isn3/2, resulting in complexity that grows faster than linearly with graph size) or a 3Ds× s× s lattice
for which the tree-width iss2 (so that the cube of the tree-width isn2).

Since exact inference is only feasible for very particular graphs, there is great interest in algorithms that yield
approximations to the correct means and covariances and that have tractable complexity. One well-known algorithm
is loopy belief propagation (LBP) [30], [20] which take the local message-passing rules which yield the exact solution
on trees, and apply them unchanged and iteratively to graphswith cycles. There has been recent progress [31], [20]
in understanding how such algorithms behave, and for GMRFs itis now known [31], [22] that if LBP converges,
it yields the correct value for̂x but not the correct values for thePv,v. Although some sufficient conditions for
convergence are known [31], [32], LBP does not always converge and may converge slowly in large GMRFs.

There are several other classes of approximate algorithms that are more closely related to our approach, and we
discuss these connections in the next subsection. As we now describe, RCM can be viewed as a direct, recursive
approximation of an exact (and hence intractable) inference algorithm created by aggregating nodes of the original
graph into a tree. In particular, by employing an information-theoretic approach to reduced-order modeling, together
with a particular strategy for aggregating nodes, we construct tractable, near-optimal algorithms that can be applied
successfully to very large graphs.

C. The Basic Elements of RCM

As with exact methods based on junction trees, RCM makes use of separators—that is, sets of nodes which, if
removed from the graph, result in two or more disconnected components. By Markovianity, the sets of variables in
each of these disconnected components are mutually independent conditioned on the set of values on the separator.
This suggests a “divide and conquer” approach to describing the overall statistics of the MRF on a hierarchically-
organized tree. Each node in this tree corresponds to a separator at a different “scale” in the field. For example,
the root node of this tree might correspond to a separator that separates the entire graph into, sayk, disconnected
subgraphs. The root node then hask children—one corresponding to each of these disconnected subgraphs—
and the node for each of these children would then correspondto a separator that further dissects that subgraph.
This continues to some finest level at which exact inference computations on the subgraphs at that level are
manageable. The problem with this approach, as suggested in Section II-B, is that the dimensionality associated
with the larger separators in our hierarchical tree can be quite high—for instance,

√
n in square grids. This problem

has led several researchers [24], [7], [33], [34], [14] to develop approaches for GMRFs based ondimensionality
reduction—that is, replacing the high-dimensional vector of values along an entire separator by a lower-dimensional
vector. While approaches such as [33], [34] use statistically-motivated criteria for choosing these approximations,
there are significant limitations of this idea. The first is that the use of low-dimensional approximations can lead
to artifacts (that is, modeling errors which expose the underlying approximation), both across and along these
separators. The second is that performing such a dimensionality reduction requires that we have available the
exact mean and covariance for the vector of variables whose dimension we wish to reduce, which is precisely the
intractable computation we wish to approximate! The third limitation is that these approaches are strictly top-down
approaches—that is, they require establishing the hierarchical decomposition from the root node on down to the
leaf nodesa priori, an approach often referred to asnested dissection. We also employ nested dissection in our
examples, but the RCM approach also offers the possibility of bottom-up organization of computations, beginning
at nodes located close to each other and working outward—a capability that is particularly appealing for distributed
sensor networks.

The key to RCM is the use of the implicit, information form, corresponding tomodelsfor the variables along
separators, allowing us to considermodel-order—rather than dimensionality—reduction. In this way, we still retain
full dimensionality of the variables along each separator,overcoming the problem of artifacts. Of course, we still
have to deal with the computational complexity of obtainingthe information form of the statistics along each
separator. Doing that in a computationally and statistically principled fashion is one of the major components of
RCM. Consider a GMRF on the graph depicted in Fig. 4(a) so that the information matrix for this field has a
sparsity pattern defined by this graph. Suppose now that we consider solving for x̂ and the diagonal ofP from
(2) by variable elimination. In particular, suppose that we eliminate all of the variables within the dashed region
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in Fig. 4(a) except for those right at the boundary. Doing thisin general will lead tofill in the information matrix
for the set of variables that remain after variable elimination. As depicted in Fig. 4(b), this fill is completely
concentrated within the dashed region—that is, within thiscavity. That is, if we ignore the connections outside the
cavity, we have a model for the variables along the boundary that is generally very densely connected. This suggests
approximating this high-order exact model for the boundaryby a reduced orthinned model as in Fig. 4(c) with
the sparsity suggested by this figure. Indeed, if we thin the model sufficiently, we can then continue the process of
alternating variable elimination and model thinning in a computationally tractable manner.

Suppose next that there are a number of disjoint cavities as inFig. 4 in each of which we have performed
alternating steps of variable elimination to enlarge the cavity followed by model thinning to maintain tractability.
Eventually, two or more of these cavities will reach a point atwhich they are adjacent to each other, as in Fig. 5(a).
At this point, the next step is one of merging these cavities into a larger one (Fig. 5(b)), eliminating the nodes
that are interior to the new, larger cavity (Fig. 5(c)), and then thinning this new model. If each step does sufficient
thinning, computational tractability can be maintained. Eventually, this “outwards” elimination ends, and a reverse
“inwards” elimination procedure commences, again done in information form. This inwards procedure eliminates
all of the variablesoutsideof each subfield, except for the variables adjacent to the subfield, producing what
is known as ablanket model. Eliminating these variables involves computations that recursively produce blanket
models for smaller and smaller subfields, as illustrated in Fig. 6, which shows that, once again, model thinning
(going from Fig. 6(c) to Fig. 6(d)) plays a central role. Finally, once this inward sweep has been completed, we
have information forms for the marginal statistics for eachof the subfields that were used to initialize the outwards
elimination procedure. Inverting these many smaller, now-localized models to obtain means and variances is then,
by construction, computationally tractable.

RCM has some relationships to other work as well as some substantive differences. The general conceptual form
we have outlined is closely related to the nested dissectionapproach [23], [12] to solving large linear systems.
The approach to model thinning in [23], [12], however, is simply zeroing a set of elements (retaining just those
elements which couple nearby nodes along the boundary). The statistical interpretation of this approach and its
extensibility to less regular lattices and fields, however, are problematic. In particular, zeroing elements can lead
to indefinite (and hence meaningless) information matrices,and even if this is not the case, such an operation in
general will modifyall of the elements of the covariance matrix (including the variances of individual variables).
In contrast, we adopt a principled, statistical approach tomodel thinning, using so-called information projections,
which guarantee that the means, variances and edgewise correlations in the thinned model are unchanged by the
thinning process.

Information-theoretic approaches to approximating graphical models have a significant literature [25], [35], [29],
[36], most of which focuses on doing this for a single, overall graphical model and not in the context of a recursive
procedure such as we develop. One effort that has considereda recursive approach is [26] which examines time-
recursive inference forDynamic Bayes’ Nets (DBNs)—that is, for graphical models that evolve in time, so that wecan
view the overall graphical model as a set of coupled temporal“stages.” Causal recursive filtering then corresponds
to propagating “frontiers”—that is, a particular choice ofwhat we would call cavity boundaries corresponding to
the values at all nodes at a single point in time. The method in [26] projects each frontier model into a family
of factored models so that the projection is given by a product of marginals on disjoint subsets of nodes. Such
an operation can be viewed as a special case of the “outward” propagation of cavity models where nodes in the
boundary are required to be mutually independent. In our approach, we instead adaptively thin the graphical model
by identifying and removing edges that correspond to weakconditional dependencies so that the thinned models
typically do not become disconnected. Also, the other two elements of our approach—specifically, the hierarchical
structure which requires merging operations as in Fig. 5 and the inward recursion for blanket models as in Fig. 6—
don’t arise in the consideration of DBNs [26]. This distinction is important for large-scale computation because
the hierarchical, tree structure of RCM is highly favorablefor parallel computing2, whereas frontier propagation
methods require serial computations. There are also parallels to the group renormalization method using decimation
[37], [13], which constructs a multi-scale cascade of coarse-scale MRFs by a combination of node-elimination and
edge-thinning, and estimates the most probable configuration at each scale using iterative methods.

2In exact inference methods using junction trees, the benefits of parallelcomputing are limited by the predominant computations on the
largest separators, a limitation that RCM avoids through the use of thinned boundary models.
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D(p‖q) = D(p‖pF) + D(pF‖q)
D(p‖pF) = h(pF) − h(p)
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D(pF‖q) F

M(p)

Fig. 1. Illustration of information projection and the Pythagorean relation.

III. M ODEL REDUCTION

In this section we focus on the problem of model reduction, the solution of which RCM employs in the recursive
thinning of cavity and blanket models. In Section III-A, we pose model reduction as information projection to a
family of GMRFs and develop a tractable maximum-entropy method to compute these projections. In Section III-C
we present a greedy algorithm that uses conditional mutual information to select which edges to remove. In our
development we assume that the model being thinned is tractable. This is consistent with RCM in which we thin
models, propagate them to larger ones that are still tractable and then thin again to maintain tractability.

A. Information Projection and Maximum Entropy

Suppose that we wish to approximate a probability distribution p(x) by a GMRF defined on a graphG = (V, E).
Over the familyF of GMRFs onG we selectq(x) to minimize theinformation divergence(relative entropy [38])
relative top:

D(p‖q) =

∫

p(x) log
p(x)

q(x)
dx ≥ 0 (3)

As depicted in Fig. 1, minimizing (3) can be viewed as a “projection” of p ontoF. Many researchers have adopted
(3) as a natural measure of modeling error [25], [36], [29]. The problem of minimizing information divergence
takes on an especially simple characterization when the approximating family F is an exponential family[39],
[35], [40], that is, a family of the formpθ(x) ∝ exp{θ · φ(x)} whereθ ∈ Rd are theexponential parametersand
φ : Rn → Rd is a vector of linearly independentsufficient statistics. The family is defined by the setθ ∈ Θ for
which

∫

exp{θ · φ(x)}dx < ∞. The vector ofmomentsη = Λ(θ) , Eθ{φ(x)} plays a central role in minimizing
(3). In particular, it can be shown thatθ ∈ Θ minimizesD(p‖pθ) if and only if we havemoment matching relative
to F; that is if and only if the expected values of the sufficient statistics that defineF are the same underpθ

and the original densityp. This optimizing element, which we refer to as theinformation projectionof p to F

and denote bypF, is the unique member of the familyF for which the following Pythagorean relation holds:
D(p‖q) = D(p‖pF) + D(pF‖q) for any q ∈ F (see [35] and Fig. 1). Information projections also have a maximum
entropy interpretation [41], [35] in that among all densities q ∈M(p) that match the moments ofp relative toF,
pF is the one which maximizes the entropyh(q) = −

∫

q(x) log q(x)dx. Moreover, the increase in entropy fromp
to pF is precisely the value of theinformation lossD(p‖pF) = h(pF)− h(p).

The family of GMRFs on a graphG is represented by an exponential family with sufficient statistics φG ,
exponential parametersθG and moment parameterηG given by:

φG(x) , (xv)v∈V ∪ (x2
v)v∈V ∪ (xuxv){u,v}∈E

θG = (hv)v∈V ∪ (−1
2Jv,v)v∈V ∪ (−Ju,v){u,v}∈E

ηG = (x̂v)v∈V ∪ (Pv,v + x̂2
v)v∈V ∪ (Pu,v + x̂ux̂v){u,v}∈E (4)

Note thatθG specifiesh and the non-zero elements ofJ while ηG specifiesx̂ and the corresponding subset of
elements inP . These parameters are related by a one-to-one mapηG = Λ(θG), defined byP = J−1 and x̂ = J−1h,
which is bijective on the image of realizable momentsM(G).

Given a distributionp(x), the projection toF(G) is given as follows. Using the distributionp, we compute the
moments relative toG, or equivalently, the meanŝxv, variancesPv,v and edge-wise cross-covariancesPu,v on G.
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The information matrixJ of the projection is then uniquely determined by the following complementary sets of
constraints [42], [28]:

(J−1)u,v = Pu,v, ∀(u, v) ∈ E∗ (5)

Ju,v = 0, ∀(u, v) 6∈ E∗ (6)

where E∗ = E ∪ {(v, v), v ∈ V }. Eq. (5) imposes covariance-matching conditions overG while (6) imposes
Markovianity with respect toG. Also, by the maximum-entropy principle, an equivalent characterization ofJ is that
P , J−1 is themaximum entropy completion[43] of the partial covariance specificationPG = (Pu,v, (u, v) ∈ E∗).
Given J, the remaining moment constraints are satisfied by settingh = Jx̂. Then,(h, J) is the information form of
the projection toG. Hence, projection to general GMRFs may be solved by a “shifted” projection to the zero-mean
GMRFs and we may focus on this zero-mean case without any loss of generality. The family of zero-mean GMRFs
is described as in (4) but without the linear-statisticsx and corresponding parametersh and momentŝx.

B. Maximum-Entropy Relative to a Chordal Super-Graph

We now develop a method to compute the projection to a graph byembedding this graph within a chordal
super-graph and maximizing entropy of the chordal GMRF subject to moment constraints over the embedded sub-
graph. This approach allows us to exploit certain tractable calculations on chordal graphs to efficiently compute
the projection to a non-chordal graph.

1) Chordal GMRFs:A graph ischordal if, for every cycle of four or more nodes, there exists an edge(a chord)
connecting two non-consecutive nodes of the cycle. LetC(G) denote the set ofcliquesof G: the maximal subsets
C ⊂ V for which the induced subgraphGC is complete, that is, every pair of nodes inC is an edge of the graph.
A useful result of graph theory states that a graph is chordalif and only if there exists ajunction tree: a tree
T = (Γ, EΓ) whose nodesγ ∈ Γ are identified with cliquesCγ ∈ C(G) and where for every pair of nodesα, β ∈ Γ
we haveCα ∩ Cβ ⊂ Cγ for all γ along the path fromα to β. Then, each edge(α, β) ∈ EΓ determines a minimal
separatorS = Cα ∩ Cβ of the graph. Moreover,any junction tree of a chordal graphG yields thesamecollection
of edge-wise separators, which we denote byS(G). The importance of chordal graphs is shown by the following
well-known result: Any strictly-positive probability distribution pG(x) that is Markov on a chordal graphG can be
represented in terms of its marginal distributions on the cliquesC ∈ C(G) and separatorsS ∈ S(G) of the graph as

pG(x) =

∏

C pC(xC)
∏

S pS(xS)
. (7)

In chordal GMRFs, this leads to the following formula for the sparse information matrix in terms of marginal
covariances:

J =
∑

C

[P−1
C ]V −

∑

S

[P−1
S ]V . (8)

Here, [. . . ]V denotes zero-padding to a|V | × |V | matrix indexed byV . In the exponential family, this provides
an efficient method to computeθG = Λ−1(ηG). Also, given the marginal covariances of an arbitrary distribution
p(x), not necessarily Markov onG, (8) describes the projection ofp to F(G). The complexity of this calculation is
O(nw3) wherew is the size of the largest clique.3

2) Entropy and Fisher Information in Chordal GMRFs:Based on (7), it follows that the entropy of a chordal MRF
likewise decomposes in terms of marginal entropy on the cliques and separators ofG. In the moment parameters
of the GMRF, we have

h(ηG) =
∑

C

hC(ηGC
)−

∑

S

hS(ηGS
), (9)

wherehC andhS denote marginal entropy of cliques and separators, computed using

hU (ηGU
) = 1

2(log detPU (ηGU
) + |U | log 2πe). (10)

For exponential families, it is well-known that∇h(η) = −Λ−1(η) so that, for GMRFs, differentiating (9) reduces
to performing the conversion (8). Thus, bothh(ηG) and∇h(ηG) can be computed withO(nw3) complexity.

3This complexity bound follows from the fact that, in chordal graphs, the number of maximal cliques is at mostn − 1 and, in GMRFs,
the computations we perform on each clique are cubic in the size of the clique.
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Next, we recall that theFisher informationwith respect to parametersηG is defined

G(ηG) , EηG
{∇ log p(x; ηG)∇T log p(x; ηG)} = −∇∇T h(ηG),

where∇ denotes gradient with respect toηG and the expectation is with respect to the unique elementp ∈ F(G)
with momentsηG . Then,G(ηG) is a symmetric, positive-definite matrix and also describes the negative Hessian
of entropy in exponential families. By twice differentiating (9), it follows that, in chordal GMRFs, the Fisher
information matrix has a sparse representation in terms of marginal Fisher information defined on the cliques and
separators of the graph:

G(ηG) =
∑

C

[GC(ηGC
)]G −

∑

S

[GS(ηGS
)]G , (11)

whereGU (ηGU
) , −∇∇T hU (ηGU

) is the marginal Fisher information onU and [. . . ]G denotes zero-padding to
a matrix indexed by nodes and edges ofG. From (11), we observe that the fill pattern ofG(ηG) defines another
chordal graph with the same junction tree asG, but where each cliqueC ∈ C(Gc) maps to a larger clique with
O(|C|2) nodes (corresponding to a full sub-matrix ofG(ηG) indexed by nodes and edges ofGC). For this reason,
direct use ofG(ηG), viewed simply as a sparse matrix, is undesirable ifG contains larger cliques. However, we can
specify implicit methods that exploit the special structure ofG to implement multiplication by eitherG or G−1

with O(nw3) complexity. Observing thatG(ηG) = ∂θG

∂ηG
represents the Jacobian of the mapping fromηG to θG , we

can compute matrix-vector productsdθG = G · dηG for an arbitrary inputdηG (viewed as a change in moment
coordinates). Differentiating (8) usingd(P−1

U ) = −P−1
U dPUP−1

U we obtain:

dJ = −
∑

S

[P−1
C dPCP−1

C ]V +
∑

C

[P−1
S dPSP−1

S ]V . (12)

Similarly, we can computedηG = G−1 ·dθG by differentiatingηG = Λ(θG). In appendix A, we summarize a recursive
inference algorithm, defined relative to a junction tree ofG, that computesηG given θG and derive a corresponding
differential form of the algorithm that computesdηG given dθG . These methods are used to efficiently implement
the variational method described next.

3) Maximum-Entropy Optimization:Given a GMRFp on G, we develop a maximum-entropy (ME) method to
compute the projection to an arbitrary (non-chordal) sub-graphS. Let G′ be a chordal super-graph ofG and let
R = E(G′) \ E(S) such thatηG′ = (ηS , ηR). We may computeηG′(p) using recursive inference on a junction tree
of G′ (see Appendix A). To compute the projection toS, we maximize entropy in the chordal GMRF subject to
moment constraints over the sub-graphS. This may be formulated as a convex optimization problem:

min
ηR

f(ηR) , −h(ηS , ηR)

s.t. (ηS , ηR) ∈M(G′) (13)

Here, ηG′ ∈ M(G′) are the realizable moments of the GMRF defined onG′.4 Starting fromη
(0)
G′ = ηG′(p), we

compute a sequenceη(k)
G′ = (ηS , η

(k)
R ) using Newton’s method. For eachk, this requires solving the linear system

G
(k)
R ·∆η

(k)
R = −θ

(k)
R (14)

whereG
(k)
R = ∇∇T f is the principle sub-matrix ofG(η

(k)
G′ ) corresponding toR andθ

(k)
R = ∇f is the corresponding

sub-vector ofθ(k)
G′ = Λ−1(η

(k)
G′ ) computed using (8). We then setη

(k+1)
R = η

(k)
R + λ∆η

(k)
R , where λ ∈ (0, 1]

is determined by back-tracking line search to stay withinM(G′) and to insure that entropy is increased. This
procedure converges to the optimalη∗G′ = (ηS , η∗R), for which the corresponding exponential parameters satisfy
θ∗R = 0. Then,θ∗S is the information projection toS.

Finally, we discuss an efficient method to compute the Newton step: If the widthw of the chordal graph is very
small, sayw < 10, we could explicitly form the sparse matrixGR and efficiently solve (14) using direct methods.
However, this approach hasO(nw6) complexity, which is undesirable for larger values ofw. Instead, we use an
inexact Newton’s step, obtained byapproximatesolution of (14) using standard iterative methods, for instance,

4In the chordal graphG′, the condition thatηG′ is realizable is equivalent toPC(ηG′
C

) � 0 for all C ∈ C(G′), which can be verified with
complexityO(nw3). Thus,M(G′) is convex because the set of positive-definite matrices on each clique is convex.
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preconditioned conjugate gradients (PCG). Such methods generally require an efficient method to compute matrix-
vector productsGR ·∆ηR, which we can provide using the implicit method, based on (12), for multiplication by
G. Also, to obtain rapid convergence, it is important to provide an efficientpreconditioner, which approximates
(GR)−1. For our preconditioner, we use(G−1)R,5 implemented using an implicit method for multiplication by
G−1 described in Appendix A. In this way, we obtain iterative methods that haveO(nw3) complexity per iteration.
Using the PCG method, we find that a small number of iterations (typically, 3-12) is sufficient to obtain a good
approximation to each Newton step, leading to rapid convergence in Newton’s method, but with significantly less
overall computation for larger values ofw than is required using direct methods.

C. Greedy Model Thinning

In this section, we propose a simple greedy strategy forthinning a GMRF model. This entails selecting edges
of the graph which correspond to weak statistical interactions between variables and pruning these edges from the
GMRF by information projection. The quantity we use to measure the strength of interaction betweenxu andxv

is theconditional mutual information[38],

Iu,v(p) , Ep

{

log
p(xu, xv|x\{u,v})

p(xu|x\{u,v})p(xv|x\{u,v})

}

= −1

2
log

(

1−
J2

u,v

Ju,uJv,v

)

≥ 0,

which is the average mutual information betweenxu and xv after conditioning on the other variablesx\{u,v}. In
GMRFs, we can omit edge{u, v} from G, without any modeling error, if and only ifxu andxv are conditionally
independent givenx\{u,v}, that is, if and only ifIu,v(p) = 0. This suggests using thevalue of Iu,v(p), which is
tractable to compute, to select edges{u, v} ∈ E to remove. To motivate this idea further, we note thatIu,v(p) is
closely related to the information loss resulting from removing edge{u, v} from G by information projection. Let
G \ {u, v} = (V, E \ {u, v}) denote the sub-graph ofG with edge{u, v} removed and letK denote the complete
graph onV . Then, observing thatG \ {u, v} is a sub-graph ofK \ {u, v}, we have, by the Pythagorean relation
with respect topK\{u,v},

D(p‖pG\{u,v}) = D(p‖pK\{u,v}) + D(pK\{u,v}‖pG\{u,v})

= Iu,v(p) + D(pK\{u,v}‖pG\{u,v})

≥ Iu,v(p)

where we have usedD(p‖pK\{u,v}) = Iu,v(p) and D(pK\{u,v}‖pG\{u,v}) ≥ 0. Thus, Iu,v(p) is a lower-bound
on the information lossD(p‖pG\{u,v}). Moreover, forp ∈ F(G) having a small value ofIu,v(p), we find that
D(pK\{u,v}‖pG\{u,v}) tends to be small relative toIu,v(p) so that Iu,v(p) then provides a good estimate of
D(p‖pG\{u,v}). In other words, removing edges with small conditional mutual information is roughly equivalent to
picking those edges to remove that result in the least modeling error.

We use the following greedy approach to thin a GMRF defined onG. Let δ > 0 specify the tolerance on
conditional mutual information for removal of an edge. We computeIu,v(p) for all edges{u, v} ∈ E and select a
subset of edgesR ⊂ E with Iu,v(p) < δ to remove. The information projection to the sub-graphS = (V, E \R) is
then computed using our ME method as described in Section III-B (relative to a chordal super-graph ofG). Because
the values ofIu,v in this information projection will generally differ from their prior values, we may continue to
thin the GMRF until all the remaining edges haveIu,v > δ. Also, by limiting the number of edges removed at
each step, it is possible to take into account the effect of removing the weakest edges before selecting which other
edges to remove, which can help reduce the overall information loss.

IV. RECURSIVECAVITY MODELING

We now flesh out the details of RCM. In Section IV-A, we specify the hierarchical tree representation of the
GMRF that we use, and in Section IV-B, we defineinformation formsand the three basic operations we use:
composition, elimination and model reduction. These forms and operators are the components we use to build our

5To motivate this preconditioner, we note that(GR)−1 is given by theSchur complementHR − HR,SH−1

S
HS,R with respect toH ,

G−1 = cov{φ(x)}. Hence, our preconditionerHR = (G−1)R arises by neglecting the intractable termHR,SH−1

S
HS,R, which is a good

approximation if the correlationHS,R is weak relative toHR andHS .
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(a) β(γ)α(γ)

π(γ)

γ

0T = (Γ, EΓ)

(b) L
Uα Uβ

Uγ

Uπ(γ)U

U0 = V

Fig. 2. (a) The treeT = (Γ, EΓ) based on (b) the collectionU of nested subsets of verticesV of the underlying graphG.

two-pass, recursive, message-passing inference algorithm on the hierarchical tree. First, as described in Section
IV-C, we perform an upward pass on the tree which constructs cavity models. Next, as described in Section IV-D,
we perform a downward pass on the tree which constructs blanket models and also estimates marginal variances
and edge-wise covariances in the GMRF. Lastly, in Section IV-E,we describe a hierarchical preconditioner, using
the cavity models computed by RCM, and an iterative estimation algorithm that computes the means for all vertices
of the GMRF.

Before we proceed, we define some basic notation with respect to the graphG = (V, E) describing the Markov
structure ofx. GivenU ⊂ V , let U ′ , V \U denote the set complement ofU in V and let∂U , {v ∈ U ′|(u, v) ∈ E}
denote theblanket of U in G. Also, ∂U ′ , ∂(U ′) is the surfaceof U and U◦ , U \ ∂U ′ is its interior. These
definitions are illustrated in Fig. 3(a), (b) and (c).

A. Hierarchical Tree Structure

We begin by requiring that the graphical model is recursively dissected into a hierarchy of nested subfields as
indicated in Fig. 2. First, we describe a “bottom-up” construction. Let the setV be partitioned into a collectionL
of many small, disjoint subsets chosen so as to induce low-diameter, connected subgraphs inG over which exact
inference is tractable. These small sets of vertices are recursively mergedinto larger and larger subfields until only
the entire setV remains. Only adjacent subfields are merged so as to induce connected subgraphs. Also, merging
should (ideally) keep the diameter of these connected subgraphs as small as possible. To simplify presentation only,
we assume that subfields are merged two at a time. This generatesa collectionU ⊂ 2V containing the smallest sets
in L as well as each of the merged sets up to and includingV . Alternatively, such a dissection can be constructed in
a “top-down” fashion by recursively splitting the graph, and resulting sub-graphs, into roughly equal parts chosen
so as to minimize the number of cut edges at each step. For instance, in 2D lattices this is simply achieved by
performing an alternating series of vertical and horizontal cuts.

In any case, this recursive dissection of the graph defines a tree T = (Γ, EΓ), in which each nodeγ ∈ Γ
corresponds to a subsetUγ ∈ U and with directed edgesEΓ linking each dissection cell to it immediate sub-cells.
We let π(γ) denote theparentof nodeγ in this tree. Also, thechildren of γ are denotedπ−1(γ) = {α(γ), β(γ)},
or more simply{α, β} whereγ has been explicitly specified. The following vertex sets are defined for eachUγ ∈ U
relative to the graphG:

Bγ , ∂Uγ , Rγ , ∂U ′
γ . (15)

As seen in Figs. 3(a), (b) and (c), the blanketBγ is the “outer” boundary ofUγ while the surfaceRγ is its “inner”
boundary, and either serves as a separator betweenUγ andU ′

γ . Also, the following separators are used in RCM:

Sγ , Rα ∪Rβ , Sα , Bγ ∪Rβ , Sβ , Bγ ∪Rα. (16)

The separatorSγ , used in the RCM upward pass, is the union of the surfaces of the two children of a subfield (see
Fig. 3(d) and (e)). The separatorsSα andSβ, used in the RCM downward pass, are each the union of its parent’s
blanket and its sibling’s surface (see Fig. 3(d) and (f)).

These separators define a Markov tree representation, with respect toT , of the original GMRF defined onG
[24]: For each leafγ of T define the state vectorxγ , xUγ

. For each non-leafγ let xγ , xSγ . By construction,
eachSγ is a separator of the graph, that is, the subfieldsUα, Uβ andU ′

γ are mutually separated bySγ . Hence, all
conditional independence relations required by the Markovtree are satisfied by the underlying GMRF. However,
we are interested in the large class of models for which exactinference on such a Markov tree representation is
not feasible because of the large size of some of the separators. As discussed in Section II-C, we instead perform
reduced-ordermodelingof these variables, corresponding to a thinned, tractable graphical model on each separator.
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(a)

Uγ

U ′

γ

(b)

Uγ

Bγ

(c)

U◦

γ

U ′

γ

Rγ

(d)

UβUα

U ′

γ

(e)

U ′

γ

Sγ

(f)

Uα

Sα

Fig. 3. Illustrations of the graphG of a GMRF and of our notation used to indicate subfields: (a) the subfieldUγ and its complement
U ′

γ ; (b) the blanketBγ = ∂Uγ ; (b) the interiorU◦
γ and surfaceRγ = ∂U ′

γ ; (d) partitioning ofUγ into sub-cellsUα andUβ ; (e) separator
Sγ = Rα ∪ Rβ ; (f) separatorSα = Rβ ∪ Bγ .

B. Information Kernels

In the sequel, we let(hU , JU ), whereU ⊂ V , hU ∈ R|U | and JU ∈ R|U |×|U | is symmetric positive definite,
represent theinformation kernelfU : R|U | → R+ defined by:

fU (xU ; hU , JU ) = exp{−1

2
xT

UJUxU + hT
UxU} (17)

The subscriptU indicates the support of the information kernel, and of the matriceshU and JU . Generally,fU

corresponds (after normalization) to a density over the variablesxU parameterized byhU andJU . In RCM, the set
U is typically a separator of the graph, andhU andJU are approximations to the exact distribution in question so
that JU is sparse. We also use matricesJU,W , whereU, W ⊂ V andJU,W ∈ R|U |×|W |, to represent the function

fU,W (xU , xW ; JU,W ) = exp{−xT
UJU,W xW }, (18)

which describes the interaction between subfieldsU, W . We adopt the following notations: LethU [W ] denote the
sub-vector ofhU indexed byW ⊂ U . Likewise,JU [W1, W2] denotes the sub-matrix ofJU indexed byW1 ×W2

and we writeJU [W ] = JU [W, W ] to indicate a principle sub-matrix.
Given two disjoint subfield models(hU1

, JU1
) and (hU2

, JU2
) and the interactionJU1,U2

we let (hU , JU ) =
(hU1

, JU1
)⊕ JU1,U2

⊕ (hU2
, JU2

) denote the joint model onU = U1 ∪ U2 defined by

hU =

(

hU1

hU2

)

, JU =

(

JU1
JU1,U2

JT
U1,U2

JU2

)

(19)

which corresponds to multiplication of information kernels or addition of their information forms.
Given an information form(hU , JU ) andD ⊂ U to be eliminated, we let(ĥS , ĴS) = Π̂S(hU , JU ) ≡ Π̂\D(hU , JU )

denote6 the operation ofGaussian Elimination(GE) defined byS = U \D and

ĥS = hU [S]− JU [S, D]JU [D]−1hU [D]

ĴS = JU [S]− JU [S, D]JU [D]−1JU [D, S] (20)

The matrixĴS is theSchur complementof the sub-matrixJU [D] in JU . Straightforward manipulations lead to the
following well-known result:

(ĴS)−1 = (J−1
U )[S] and (ĴS)−1ĥS = (J−1

U hU )[S]. (21)

Thus, the information form(ĥS , ĴS) corresponds to the marginal onS with respect to the model(hU , JU ). Also,
GE may be implementedrecursivelyas follows: given anelimination order(d1, . . . , dn) of the elements inD,
compute (20) aŝΠ\dn

· · · Π̂\d1
(U,hU , JU ), that is, by eliminating one variable at a time. Note also that only those

6Two notations are introduced, as in some casesS = U \ D is given explicitly, while in others it is only implicitly specified in terms of
U andD.
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(a)

J [Uγ ]

(b)

ĴRγ

(c)

J̃Rγ

Fig. 4. Initialization of a cavity model for a small subfieldUγ ∈ L, corresponding to a leaf ofT : (a) the initial subfield modelJ [Uγ ],
a sub-matrix ofJ ; (b) the cavity modelĴRγ = Π̂J [Uγ ] after Gaussian elimination of the interior variablesU◦

γ = Uγ \ Rγ ; (c) the final
thinned cavity modelJ̃Rγ = Π̃δĴRγ defined on the surfaceRγ of subfieldUγ .

entries ofhU andJU indexed by∂D are modified by GE. Hence, GE is alocalizedoperation within the graphical
representation of the GMRF as suggested by Figs. 4(a) and 4(b). However, eliminatingD typically has the effect
of causingĴS [∂D] to become full as shown in Fig. 4(b). This creation offill can spoil the graphical model so that
recursive GE becomes intractable with worst-case cubic complexity in dense graphs.

Given an information matrixJU we denote the result ofmodel-order reductionby J̃U = Π̃δJU . The model reduc-
tion algorithm in Section III requires specifying a parameter δ which controls the tolerance on conditional mutual
information for the removal of an edge. The procedure then determines which edges in the graph corresponding to
JU to remove and determines the projection to this thinned graph. This projection preserves variances and edge-
wise cross-covariances on the thinned graph, which is equivalent toΠ̂C J̃U = Π̂CJU for each cliqueC ⊂ U of the
thinned graph.

In the following sections, we first develop our two-pass approximate inference procedure, focusing on calculation
of just the information matrices, which are all independentof h. Then, we provide additional calculations involving
h and x̂, presented as a separate two-pass procedure which then serves as a preconditioner in an iterative method.

C. Upward Pass: Cavity Model Propagation

In this first step, messages are passed from the leaves of the treeL up towards the rootV . These upward messages
take the form ofcavity models, encoding conditional statistics of variables lying in thesurfaces of given subfields.
To be precise, each cavity model, represented by an information matrix J̃Rγ

, approximates a conditional density
p(xRγ

|xBγ
= 0) so thatJ̃Rγ

is a tractable, thin matrix.
1) Leaf-Node Initialization: For eachUγ ∈ L we initialize a cavity model as follows: We begin with the

local information matrixJ[Uγ ] as depicted in Fig. 4(a). This specifies the conditional densityp(xUγ
|xBγ

= 0) ∝
f(xUγ

; 0, J[Uγ ]). We then eliminate all variables within the interior ofUγ by Gaussian elimination:̂JRγ
= Π̂Rγ

J[Uγ ].
This has the effect of deleting all nodes in the interior ofUγ and updating the matrix parameters on the surface.
As indicated in Fig. 4(b), this also induces fill within the information matrix. To ensure tractable computations in
later stages, we thin this model:J̃Rγ

= Π̃δĴRγ
, yielding a reduced-order cavity model, as shown if Fig. 4(c), for

each subfieldUγ ∈ L. Then we are ready to proceed up the tree growing larger cavitymodels from smaller ones.
2) Growing Cavity Models:Let Uγ ( V be a subfield inU where we have already constructed the two cavity

models forRα andRβ as depicted in Fig. 5(a). Then, we construct the cavity model for Uγ as follows:
a) Join Cavity Models:First, we form the composition of the two sub-cavity models asindicated in Fig. 5(b):

J̃Sγ = J̃Rα
⊕ J[Rα, Rβ ]⊕ J̃Rβ

. Note thatSγ = Rα ∪Rβ is a superset ofRγ .
b) Variable Elimination: Next, we must eliminate the extra variablesDγ , Sγ \ Rγ , to obtain the marginal

information matrixĴRγ
= Π̂Rγ

J̃Sγ . To ensure scalability, rather than eliminating all variables at once, we eliminate
variables recursively beginning with those farthest from the surface and working our way towards the surface. This
is an efficient computation thanks to model reductions performed previously inUα andUβ.

c) Model Thinning: This preceding elimination step induces fill “across” the cavity (Fig. 5(c)). Hence, to
maintain tractability as we continue, we perform model-order reduction yielding̃JRγ

= Π̃δĴRγ
which is the desired

reduced-order cavity model represented in Fig. 5(d). This projection step requires that we compute moments of the
graphical model specified bŷJRγ

. Thanks to model thinning in the subtree ofT rooted atγ, these moments can
be computed efficiently.
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(a)

J̃Rα
J̃Rβ

(b)

J̃Sγ

(c)

ĴRγ

(d)

J̃Rγ

Fig. 5. Recursive construction of a cavity model: (a) cavity modelsJ̃Rα , J̃Rβ
of sub-cellsUα, Uβ ; (b) joined cavity modelJ̃Sγ =

J̃Rα ⊕ J [Rα, Rβ ] ⊕ J̃Rβ
defined on separatorSγ = Rα ∪ Rβ ; (c) the cavity modelĴRγ = Π̂J̃Sγ after Gaussian elimination of variables

Sγ \ Rγ ; (d) the final thinned cavity model̃JRγ = Π̃δĴRγ defined on the surfaceRγ of subfieldUγ .

(a)

Uα
J̃Rβ

J̃Bγ

(b)

Uα

J̃Sα

(c)

Uα

ĴBα

(d)

Uα

J̃Bα

Fig. 6. Recursive construction of a blanket model: (a) the cavity modelJ̃Rβ
of the sibling subfieldUβ and the blanket model̃JBγ of the

parent; (b) joined cavity/blanket model̃JSα = J̃Rβ
⊕ J [Rβ , Bγ ] ⊕ J̃Bγ defined on the separatorSα = Rβ ∪ Bγ ; (c) the blanket model

ĴBγ = Π̂J̃Sα after Gaussian elimination of variablesSα \ Bγ ; (d) the final thinned blanket model̃JBα = Π̃δĴBα defined on the blanket
Bα of subfieldUα.

D. Downward Pass: Blanket Model Propagation

The next, downward pass on the treeT involves messages in the form ofblanket models, that is, graphical models
encoding the conditional statistics of variables lying in the blanket of some subfield. Each subfield’s blanket model
is a concise summary of the complement of that subfield sufficient for near-optimal inference within the subfield.
Specifically, the blanket model̃JBγ

is a tractable approximation of the conditional modelp(xBγ
|xRγ

= 0).
1) Root-Node Initialization:Note that the blanket ofV is the empty set so that a blanket model is not required

for the root ofT . As we move down to the childrenUα(0) and Uβ(0), we note thatBα(0) = Rβ(0) and, hence, a
blanket model forUα(0) is given by the cavity model forUβ(0), which was computed in the upward pass. Hence,
we already have blanket models forUα(0) andUβ(0) and are ready to build blanket models for their descendents.

2) Shrinking Blanket Models:Suppose that we already have the blanket model forUγ as represented in Fig. 6(a).
Then, we can construct the blanket model for the childUα as follows:

a) Joining Blanket and Sub-Cavity Model:First, we form the composition of the blanket model defined onBγ

with the cavity model defined onRβ (from the sibling ofα) as shown in Fig. 6(b):̃JSα
= J̃Bγ

⊕ J[Bγ , Rβ]⊕ J̃Rβ
.

Note thatSα = Bγ ∪Rβ is a superset ofBα.
b) Variable Elimination:Next, we eliminate all variables inDγ , Sα\Bα, yielding ĴBα

= Π̂Bα
J̃Sα

. To ensure
scalable computations, we again perform variable elimination recursively, starting with vertices farthest from the
blanket and working our way towardsUα. The result is depicted in Fig. 6(c).

c) Model Thinning: Lastly, we thin this resulting blanket model:J̃Bα
= Π̃δĴBα

, yielding our reduced-order
blanket model for subfieldUα (Fig. 6(d)). The blanket model forUβ is computed in an identical manner with the
roles ofα andβ reversed.

3) Leaf-Node Marginalization:Once we have constructed a blanket model for each of the smallest subfields
Uγ ∈ L, we can join this model with the conditional model for the enclosed subfield (that is the model used to
seed the upwards pass), to obtain a graphical model approximation of the (zero-mean) marginal densityp(xŪγ

) on
Ūγ , Uγ ∪ Bγ , given in information form bỹJŪγ

= J[Uγ ] ⊕ J[Uγ , Bγ ] ⊕ J̃Bγ
. Inverting each of these localized

models, that is, computing̃PŪγ
= (J̃Ūγ

)−1, yields variances of all variables and covariances for eachedge ofG.

E. An RCM-Preconditioner for Iterative Estimation

In the preceding sections, we have described a recursive algorithm for constructing a hierarchical collection of
cavity and blanket models, described by thin information matrices. In this section, we describe how to extend these
computations to compute the estimatesx̂ solving Jx̂ = h. We begin by describing a two-pass algorithm, based
on the cavity models computed previously, which computes anapproximation of̂x, and then describe an iterative
procedure, using the two-pass algorithm as apreconditioner, that iteratively refines the estimate.



13

1) Upward-Pass:We specify a recursive algorithm that works its way up the tree, computing a potential vector
hRγ

at each nodeγ ∈ Γ of the dissection tree. Let̃JRγ
denote the cavity models computed previously by the RCM

upward pass. For each leaf-node, we solveJ [Uγ ] · xUγ
= h[Uγ ] for xUγ

and then computehRγ
= J̃Rγ

· xUγ
. At

each non-leaf node, we computehRγ
as follows:

a) Join: Form the composite model(hSγ , JSγ ) = (hRα
, J̃Rα

)⊕J[Rα, Rβ ]⊕(hRβ
, J̃Rβ

), whereSγ = Rα∪Rβ ,
by joining the two cavity models from the children.

b) Sparse Solve:Given this joint model, we solveJSγ · xSγ = hSγ using direct methods, which is tractable
becauseJSγ is a thin, sparse matrix.7

c) Sparse Multiply: Finally, we compute the potential vectorhRγ
= J̃Rγ

· xSγ [Rγ ], which is a tractable
computation becausẽJRγ

is sparse.
2) Downward-Pass (Back-Substitution):Once the root node is reached, we have the information form(hS0 , JS0) =

(hRα(0)
, J̃Rα(0)

) ⊕ J[Rα(0), Rβ(0)] ⊕ (hRβ(0)
, J̃Rβ(0)

) at the top-level separator of the dissection tree, which is an
approximate model for the marginal distributionp(xS0). Hence, we can compute an approximation for the means
x̂S0 by solvingJS0 · x̂S0 = hS0 . Conditioning on this estimate, we can then recurse back down the tree filling in the
missing values of̂x along each separator, thereby propagating estimates down the tree. In this downward pass, each
node below the root of the tree receives an estimatex̂Rγ

of the variables in the surfaceRγ of the corresponding
subfield. Again using the model(hSγ , JSγ ), formed by the upward computations, we interpolate into thesubfield,
computingx̂Dγ whereDγ = Sγ \Rγ , by solution of the linear system of equations

JDγ · x̂Dγ = hDγ

JDγ , JSγ [Dγ ]

hDγ , hSγ [Dγ ]− JSγ [Dγ , Rγ ] · x̂Rγ
. (22)

The estimatex̂Dγ is computed with respect to the approximation ofp(xDγ |x̂Rγ
) ≈ f(xDγ ; hDγ , JDγ ) (after

normalization), which is approximate because of the model thinning steps in RCM. Once the leaves of the tree are
reached, the interior of each subfield is interpolated similarly, thus yielding a complete estimatêx.

3) Richardson Iteration:The preceding two-pass algorithm may be used to compute an approximate solution of
Jx = b for an arbitrary right-hand sideb. The resulting estimate is linear inb and we denote this linear operator
by M. Using M as a preconditioner8, we compute a sequence of estimates{x̂(n)} defined byx̂(0) = 0 and

x̂(n+1) = x̂(n) + M · (h− J · x̂(n)). (23)

Let ρ denote the spectral radius ofI −MJ. If ρ < 1 then x̂(n) converges tôx , J−1h with ‖x̂(n) − x̂‖ ≤ ρn‖x̂‖.
For smallδ, this condition is met and we achieve rapid convergence to the correct means.

V. A PPLICATIONS IN REMOTE SENSING

In this section we develop two applications of RCM in remote sensing: (1) interpolation of satellite altimetry
measurements of sea-surface height, and (2) estimation of the surface of a large salt-deposit beneath the Gulf of
Mexico. The purpose of these examples is to demonstrate that RCM scales well to very large problems while yielding
estimates and error covariances that are close to those thatwould have resulted if exact optimal estimation had been
performed instead. Although the specific statistical modelsused in these examples are perhaps over-simplified, the
results that follow (which include space-varying measurement densities and hence space-variant estimation errors)
do serve to demonstrate the applicability of RCM to very large spatial estimation problems.

7We use a sparse Cholesky factorization ofJ̃Sγ and back-substitution based onhSγ . Also, some computation can be saved if we use an
elimination order beginning withSγ \ Rγ because we only need to computexSγ [Rγ ] in the back-substitution.

8To implementM·b efficiently, we pre-compute and store calculations that do not depend onb. For instance, we compute a sparse Cholesky
factorization for eachJ̃Rγ using a low-fill elimination order. This leads to an extremely fast preconditioner because only back-substitution
steps are required each time we applyM to a differentb vector.
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A. Model Specifications

Throughout this section, we consider GMRFs of the form

p(x, y) ∝ exp

{

−1

2

(‖Dx‖2
σ2

r

+
‖y − Cx‖2

σ2
d

)}

(24)

wherex ∈ Rn represents the vector of field values at the vertices of a regular 2D lattice andy ∈ Rm is a vector of
local, noisy measurements of the underlying field at an irregular set of points scattered throughout the field. Here,
‖Dx‖2 represent our prior forx, which serves to regularize the field, and the data-fidelity term ‖y−Cx‖2 represents
our measurement model. We consider two prior models commonly used in image-processing. The thin-membrane
(TM) model is defined such that each rowdk corresponds to an edge{u, v} ∈ E , and has two non-zero components:
dk,u = +1 anddk,v = −1. This gives a regularization term

‖Dx‖2 =
∑

{u,v}∈E

(xu − xv)
2 (25)

that penalizes gradients, favoring level surfaces. The thin-plate (TP) model is defined such that each rowdv

corresponds to a vertexv ∈ V and has non-zero componentsdv,v = 1 and dv,u = − 1
|N(v)| for adjacent vertices

u ∈ N(v). This gives a regularization term

‖Dx‖2 =
∑

v∈V



xv − 1
|N(v)|

∑

u∈N(v)

xu





2

(26)

that penalizes curvature, favoring flat surfaces. In general, the locations of the measurementsy defines an irregular
pattern with respect to the grid defined forx. Moreover, the location of individual measurements may fall between
these grid points. For this reason each measurementyt is modeled as the bilinear interpolationct · x of the four
nearest grid points to the actual measurement location corrupted by zero-mean, white Gaussian noise:yt = ct ·x+vt

wherevt ∼ N(0, σ2
d). The posterior densityp(x|y) may be expressed in information form with parameters

J =
DT D

σ2
r

+
CT C

σ2
d

, h =
CT y

σ2
d

.

Thus, the fill-pattern ofJ (and hence the posterior Markov structure ofx) is determined both byDT D andCT C. In
the TM model,DT D has non-zero off-diagonal entries only at those locations corresponding to nearest neighbors
in the lattice. In the TP model, there are also additional connections between pairs of vertices that are two steps
away in the square lattice, including diagonal edges. Finally, for each measurementyk there is a contribution of
ckc

T
k to J , which creates edges between those four grid points closestto the location of measurementk. This

results in a sparseJ matrix where all edges are between nearby points in the lattice. Hence, we can apply RCM
to the information model(h, J) to calculate approximations of the estimatesx̂v(y) = E{xv|y} and error variances
σ̂2

v = E{(xv − x̂v(y))2|y} for all verticesv ∈ V and error covariancesE{(xu − x̂u(y))(xv − x̂v(y))} for all edges
{u, v} ∈ E . In Appendix B, we also describe an iterative algorithm to estimate the model parametersσr andσd.

B. Sea-Surface Height Estimation

First, we consider the problem of performing near-optimal interpolation of satellite altimetry of sea-surface
height anomaly (SSHA), measured relative to seasonal, space-variant mean-sea level.9 We model SSHA by the
thin-membrane model, which seems an appropriate choice as it favors a level sea-surface. We estimate SSHA at
the vertices of an800 × 2400 lattice covering latitudes between±60◦ and a full360◦ of longitude, which yields
a resolution of15

◦
in both latitude and longitude. The final world-wide estimatesand associated error variances,

obtained using RCM withδ = 10−4 and model parametersσr ≈ 1cm and σd ≈ 3.5cm, are displayed in Fig. 7.
In this example, RCM requires about three minutes to execute, including run-time of both the cavity and blanket
modeling procedures as well as the total run-time of the iterative procedure to compute the means. About 30
iterations are required to obtain a residual error‖h−J x̂(k)‖ less than10−4, where each iteration takes 2-3 seconds.

9This data was collected by the Jason-1 satellite over a ten day period beginning 12/1/2004 and is available from the Jet Propulsion
Laboratoryhttp://poodaac.jpl.nasa.gov.
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Fig. 7. Estimated sea-surface height anomaly and space-variant standard deviation of estimation error computing using RCM.

C. Salt-Top Estimation

Next, we consider the problem of estimating the “salt-top”,that is, the top surface of a large salt deposit located
several kilometers beneath the sea-floor somewhere in the Gulf of Mexico. The data for this estimation problem,
provided courtesy of Shell International Exploration, Inc.,consists of a large set of “picks” chosen by analysts while
viewing cross-sections of seismic sounding data. Hence, these picks fall along straight line segments in latitude
and longitude, and it is our goal to interpolate between these points. For this problem, we use the thin-plate model
for the surface of the salt-deposit, which allows for undulations typically seen in the salt-top, with a800 × 800
lattice at a resolution of60 feet and with model parametersσr ≈ 12 feet andσd ≈ 35 feet. The final estimates and
error variances are shown in Fig. 8. These results were obtained using RCM with a tolerance ofδ = 10−4, which
required about five minutes to run, including the total time required for iterative computation of the means. The
run-times for the TP model are somewhat slower than for the TM model because the Markov blankets arising in
the TP model are twice as wide as in the TM model, so the cavity andblanket models are more complex.

VI. CONCLUSION

We have presented a new, principled approach to approximateinference in very large GMRFs employing a
recursive model reduction strategy based on information theoretic principles and have applied this method to
perform near-optimal interpolation of sea-surface satellite altimetry. These results show the practical utility of the
method for near-optimal, large-scale estimation. Several possible directions for further research are suggested by this
work. First, the accuracy of RCM in applications such as that illustrated here provides considerable motivation for
the development of a better theoretical understanding of its accuracy and stability. For instance, if it were possible to
compute and propagate upper-bounds on the information divergence in RCM this would be very useful and may lead
to a robust formulation. Although we have focused on examples using Gaussian prior models, we expect RCM will
also prove useful in non-linear edge-preserving methods such as [44]. Although these methods use a non-Gaussian
prior, their solution generally involves solving a sequence of Gaussian problems with an adaptive, space-variant
process noise. Hence, RCM could be used as a fast computational engine in these methods. We also are interested
to apply RCM to higher-dimensional GMRFs, such as arise in seismic and tomographic 3D estimation problems or
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Fig. 8. Estimated salt-top and space-variant standard deviation of estimation error computing using RCM.

for filtering of dynamic GMRFs. We anticipate that it will be important to take advantage of the inherently parallel
nature of RCM to address these computationally intensive applications. Another direction to explore is based on the
rich class of multi-scale models, such as models having multi-grid or pyramidal structure. For example, the work in
[11] demonstrates the utility and drawbacks of using multi-resolution models defined ontreesto estimation of ocean
height from satellite data. Such models allow one to capture long-distance correlations much more efficiently than
a single-resolution nearest-neighbor model, but the tree structure used in [11] leads to artifacts at tree boundaries,
something that RCM is able to avoid. This suggests the idea of enhancing models as in [11] by including new
edges that eliminate these artifacts but that introduce cycles into these multi-resolution graphical models. However,
if such models can be developed, RCM offers a principled, scalable approximate inference algorithm well-suited for
solution of such hierarchical, multi-resolution models. Finally, while the specifics of this paper concern Gaussian
models, the general framework we have outlined should applymore generally. This is especially pertinent for
inference in discrete MRFs where computation of either the marginal distributions or the mode grows exponentially
in the width of the graph [6], [10], which suggests developing counterparts to RCM for these problems.

APPENDIX

A. Recursive Inference Algorithm

In this appendix we summarize a recursive algorithm for computing the momentsηG = Λ(θG) of a zero-mean,
chordal GMRF. Also, by differentiating each step of this procedure, we obtain an algorithm to compute the first-
order change in moment parametersdηG due to a perturbationdθG . The complexity of both algorithms isO(nw3),
wheren is the number of variables andw is the size of the largest clique. These algorithms are used assub-routines
in the model-reduction procedure described in Section III. In RCM, these methods are only used for thin cavity
and blanket models and are tractable in that context.

Let T = (Γ, EΓ) be a junction tree ofG. We obtain a directed version ofT by selecting an arbitrary clique to be
the root node and orienting the edges away from the root. For each non-root nodeγ, let π(γ) denote its parent. We
split each cliqueCγ into a separatorSγ = Cγ ∩Cπ(γ) and the residual setRγ = Cγ \Cπ(γ). At the root, these are
definedSγ = ∅ andRγ = Cγ . Now, we specify our recursive inference procedure. The input to this procedure is
the sparse matrixJ, which is defined over a chordal graph and parameterized byθG . The output is a sparse matrix
P, defined on the same chordal graph, with elements specified byηG . In the differential form of the algorithm, we
also have a sparse inputdJ and sparse outputdJ, corresponding todθG anddηG .

1) Upward Pass:For each nodeγ ∈ Γ of the junction tree, starting from the the leaves of the treeand working
upwards, we perform the following computations in the ordershown:

Qγ = (J[Rγ ])−1

Aγ = −Qγ · J[Rγ , Sγ ]

J[Sγ ] ← J[Sγ ] + J[Sγ , Rγ ] ·Aγ
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In the differential form of the algorithm, we also compute:

dJγ = −Qγ · dJ[Rγ ] ·Qγ

dJγ = −(Qγ · dJ[Rγ ] + dJγ · J[Rγ ])

dJ[Sγ ] ← dJ[Sγ ] + dJ[Sγ , Rγ ] ·Aγ + J[Sγ , Rγ ] · dJγ

The upward pass performs Gaussian elimination inJ. At each step, the principle sub-matrices ofJ anddJ indexed
by Sγ are overwritten, which propagates information to the ancestor’s of nodeγ in the junction tree. Also,Aγ

andQγ specify an equivalent downward model:x[Rγ ] = Aγ · x[Sγ ] + wγ wherewγ ∼ N (0, Qγ). This downward
model is re-used in the downward pass.

2) Downward Pass:For each nodeγ ∈ Γ of the junction tree, starting from the root node and workingdown
the tree, we perform the following calculations at each nodeγ of the dissection tree:

P[Rγ , Sγ ] ← Aγ · P[Sγ ]

P[Sγ , Rγ ] ← PT [Rγ , Sγ ]

P[Rγ ] ← P[Rγ , Sγ ] ·AT
γ + Qγ

In the differential form of the algorithm, we also compute:

dJ[Rγ , Sγ ] ← dJγ · P[Sγ ] + Aγ · dJ[Sγ ]

dJ[Sγ , Rγ ] ← dJT [Rγ , Sγ ]

dJ[Rγ ] ← dJ[Rγ , Sγ ] ·AT
γ + P[Rγ , Sγ ] · dJT

γ + dJγ

B. Parameter Estimation

We describe the expectation-maximization (EM) algorithm [45] we use for parameter estimation in both models
described in Section V. These are exponential family models ofthe form

pθ(x, y) ∝ exp{θ1φ1(x) + θ2φ2(x, y)}
φ1(x) = 1

2

(

‖Dx‖2 + ε‖x‖2
)

φ2(x, y) = 1
2‖y − Cx‖2 (27)

where φ1 is the regularization term10 and φ2 is the data-fidelity term. We wish to select the parametersθ =
(θ1, θ2) = −( 1

σ2
r

, 1
σ2

d

) to maximize`(θ) =
∫

pθ(x, y)dx for a given set of observationsy. The EM algorithm is an

iterative procedure that converges to a local maxima of`(θ) starting from an initial guessθ(0). For t = 1, 2, . . . , we
alternate between (E-step) computing the conditional moments η(t) , Eθ(t−1){φ|y} giveny andθ(t−1), and (M-step)
selecting the next parameter estimateθ(t) to solve the equationsEθ(t){φ} = η(t). In our model, the conditional
moments are

η
(t)
1 = φ1(x̂) + 1

2

(

tr(DP(t)DT ) + εtr(P(t))
)

η
(t)
2 = φ2(x̂, y) + 1

2tr(CP(t)CT ) (28)

wherex̂(t) = E{x|y} andP(t) = cov(x|y) are computed giveny andθ(t−1). Due to sparsity ofD, it is tractable to
computeDx̂(t) and only certain sub-matrices ofP(t) are needed to computetr(DP(t)DT ). For instance, in the TM
model we have

tr(DP(t)DT ) =
∑

k

dT
k P(t)dk =

∑

{u,v}∈E

(P(t)
u,u + P(t)

v,v − 2P(t)
u,v),

10Here, to simplify analysis, we add an additional regularization term‖x‖2 with relative weightε > 0, which can be made arbitrarily
small. This insures thatp(x) is non-singular, with invertible information matrix−θ1(D

T D + εIn).



18

which only requires computation of variances and edge-wisecovariances. Similarly, because each measurement only
depends on a few components ofx, the matrixC is sparse and it is tractable to computeCx̂(t) and tr(CP(t)CT ).
To solve the M-step, we note that

E{φ1} = tr((DT D + εIn)cov(x))

= tr((DT D + εIn)(−θ1(D
T D + εIn))−1)

= −nθ−1
1

wheren is the dimension ofx. By similar analysis,E{φ2} = −mθ−1
2 wherem is the number of measurements.

Thus, the solution for the M-step is
θ
(t)
1 = − n

η
(t)
1

andθ
(t)
2 = − m

η
(t)
2

, (29)

which, together with (28), specifies the EM algorithm. The EM algorithm requires computation of conditional
variances and edge-wise covariances at each iteration. Hence, simple estimation methods that only compute the
meansx̂ are inadequate for parameter estimation. RCM also computesapproximate variances and edge-wise
covariances and is therefore well-suited for implementingan approximateEM procedure for models where direct
methods are intractable. This approach can be used to obtain parameter estimates in the applications considered in
Section V.
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